Accelerated Solvent Extraction ASE® Systems

Now with Dionium[™] pH hardened pathways

Passion. Power. Productivity.

ASE 150 and ASE 350 Solvent Extractors Deliver Greater Capabilities

Unsurpassed Extraction Technology

ASE uses a combination of elevated temperature and pressure with common solvents to increase the efficiency of the extraction process. The result is faster extraction times and a significant reduction in solvent use. The ASE 150 and ASE 350 continue to deliver the proven ASE technology that has earned Dionex recognition as a world leader in solvent extraction. ASE methods are established and accepted in the environmental, pharmaceutical, foods, polymer, and consumer products industries. ASE is accepted by the U.S. EPA as Methods 3545A and 6860, and by the American Society for Testing and Materials as ASTM D 7210.

Using solvents at elevated temperature and pressure, ASE combines the following features to deliver superior extractions:

- High analyte solubility
- Reduced matrix effects or weaker matrix and analyte interaction
- Faster analyte diffusion from matrix into solvent
- Decreased solvent viscosity for increased solvent penetration into the matrix
- Increased pressure to maintain solvent in a liquid phase during the extraction process

The Value of ASE

Only ASE provides the user with unsurpassed flexibility:

- Wide range of sample sizes: 1–100 g
- Consistent extraction from sample to sample and batch to batch
- Reduced solvent consumption using standard ASE operation or solvent saver mode
- Flow-through technology with pH-hardened Dionum pathway to support acid or alkaline sample matrices

Sequential extractions and the ASE SmartRun™ system assist with method development. SmartRun is a feature of the ASE 350 that ensures the proper collection vial is matched with the proper size extraction cell. The pH-hardened pathway is ideal for in-cell clean-up using special resins or acidic or alkaline sorbents.

The Dionium Pathway

The chemically-inert ASE Dionium pathway is ideal for samples pretreated with acids or bases. Dionium supports expanded choices of both pretreated matrices and post-treatment adsorbents for in-cell clean-up.

High Capability, Flexibility, Productivity

The ASE 150 and 350 extractors deliver many advantages to laboratories requiring automated solid and semisolid extraction. Equipped with Dionium components in the internal extraction pathway, the extractors now handle acidic and alkaline matrices. The ASE 350 extractor handles 1-100 g of sample, combining the abilities of the previous ASE 200 and ASE 300 into a single system. It also includes an integrated solvent controller, reducing bench space that would otherwise be needed for a separate controller. Both the ASE 150 and 350 include a faster pump (70 mL/min), which translates into greater productivity for your laboratory.

ASE 150 Feature	Benefit/Value
Accepts both 250- and 60-mL collection bottles and vials	Increased flexibility
Safety shield over bottles and vials	Added user protection
Dionium, chemical resistant pathway	Acid and base tolerance to support more applications
New, faster pump (70 mL/min)	Faster extractions
Accommodates all sizes of cells	Increased flexibility to meet sample requirements
(1, 5, 10, 22, 34, 66, and 100 mL)	for many applications

ASE 350 Feature	Benefit/Value
Accepts both 250- and 60-mL collection bottles and vials—28 60-mL vials, 19 250-mL bottles, or 28 of the 60-mL vials and five of the 250-mL bottles	Increased flexibility for different extractions
Dionium, chemically resistant pathway	Increased capability and different applications
Solvent saver mode	Increased solvent savings
New faster pump (70 mL/min)	Faster extractions
Larger front panel with new keyboard	Greater ease of operation
New needle assembly with two vent needles	Reliable operation
Integrated solvent controller	Smaller instrument footprint
Improved waste bottle interface	Easier access for dumping waste
Electronic calibration of pressure transducer and hydrocarbon sensor	Simpler calibration procedure
Two 250-mL bottles for collection of rinse solvent	Full capacity
USB port for firmware update and eventual computer connection	Downloading sample information

ASE Performs Extraction in Minutes

Other extraction techniques can take up to 48 h. With ASE, extractions are typically performed in 12–20 min. See the "Time Savings" table for examples.

ASE Reduces Solvent Consumption

Save 50–90% in solvent consumption when compared to other techniques. See the "Solvent Savings" table for examples.

Time Savings							
Technique	Average Extraction Times*						
Soxhlet	4–48 h						
Automated Soxhlet	1–4 h						
Sonication	0.5–1 h						
SFE	0.5–2 h						
Microwave	0.5–1 h						
ASE 150/350 with in cell clean-up	0.2–0.3 h						

^{*}Extraction times are based on a per sample basis. This estimate does not include sample weighing, loading, or concentration, although it does include sample filtering, if necessary. In-cell clean-up is a technique used with ASE flow-through design, to add absorbent directly to the extraction cell that retains interferences. This technique further increases time savings.

Solvent Savings							
Technique	Solvent Usage*						
Soxhlet	150-500 mL						
Automated Soxhlet	50-100 mL						
Sonication	150-200 mL						
SFE	5–50 mL						
Microwave	25–50 mL						
ASE 150/350**	5–200 mL						

^{*}Solvent usage are based on a per sample basis. Additionally, ASE has many cells sizes to adapt to sample size requirements

Performing ASE

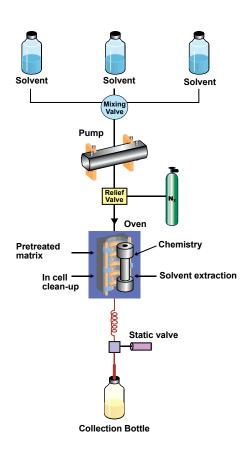
Add solid or semisolid samples that have been chemically treated to the ASE Dionium extraction cell.

Sample Pretreatment (Optional)

If necessary, pretreat samples by performing a hydrolysis step or adjusting pH of samples using acids or bases, so that net concentration of acid or base does not exceed 0.1 M.

ASE automatically performs solvent extraction as follows:

- 1. Cell is filled with solvent (aqueous or organic).
- 2. Cell is heated and pressurized.
- 3. Sample is held at 1500 psi and desired temperature.


- Fresh solvent is pumped through sample and entire pathway.
- 5. System is purged with nitrogen.

In-Cell Clean Up (Optional)

Various resins can be layered in the extraction cell to retain interferences, providing a clean extract that is ready for analysis and requires no post-extraction clean-up step.

Benefits of Flow-Through Pathways

- In-line filtration
- In-cell removal of interferences
- Sequential extractions with multiple solvents to remove interferences and then analytes
- Reproducible temperature control for each extraction

^{**} Solvent saver mode provides further reduction in solvent consumption.

Extraction Applicatio

ASE Meets Your Application Requirements

Environmental Analysis

For environmental applications, ASE is proven to produce data equivalent to or better than traditional methods. ASE is accepted for use in EPA Method SW-846 3545 for the extraction of:

- · Pesticides and herbicides
- PAHs and semi-volatile compounds
- PCBs
- Dioxins and furans
- TPH (DRO)
- Explosive compounds

ASE is also accepted for use in EPA Method SW-846 6860 for the determination of perchlorate and in CLP OLM 04.2 A for semivolatiles and pesticides. More recently, ASE has proven effective in extracting organic compounds from air using polyurethane foam filters (PUF) and XAD resins.

Food Analysis

European and Asian government agencies have approved ASE for the determination of contaminants in food. ASE delivers optimal extractions for the following applications.

- Determination of pesticide residues in a variety of sample types marketed for human or animal consumption
- Determination of lipids after acid hydrolysis
- Determination of fat and/or additive content of many food types in accordance with new and more stringent labeling requirements
- Determine the flavor profile of consumer products

With 100-mL extraction cells, ASE is capable of extracting large-gram weight samples with high moisture content,

to support the large sample volumes required for low-detection-limit food and beverage analyses. For agricultural products, ASE delivers automated extraction of residual pesticides (chlorinated and phosphorous), PCBs, and dioxins.

Analyte Class (EPA Analysis Method)	MDLa mg/kg	Accuracy (% Recovery of CRM)	Recovery as a % of Soxhlet	Precision (%RSD)
Organochlorine pesticides (8081) (average of 20 compounds)	0.5–3.2	66–84	75–105	3.2
PCBs (Aroclor 1254, 8082)	57–70	99	96.3	3.5
Total Petroleum Hydrocarbons (DRO, 8015)	5.1	104.1	NA	9.7
Organophosphorus Pesticides (8141) (average of 24 compounds)	18.9–171	56–72	90–111	16.3
Chlorinated Herbicides (8151) (average of 8 compounds)	22-261	36–69	101-118°	15.5
Semivolatiles (BNAs, 8270) (average of 56 compounds)	16–89	58–70	66–120	5.4
Dioxins (8280/8290)	Low ppt	73b	96b	4.24 ^d

^aCalculated as per SW-846 chapter 1.

Pesticide	Percent Recovery of Organophosphorus Pesticides from 30-g Apple Puree Sample Fortified at 50 ppb								
Pesticides	% Recovery	SD	RSD %						
Dichlorvos/Naled	87	10	12						
Mevinphos	100	12	12						
TEPP	121	20	16						
Demeton-O	65	12	19						
(Ethoprop)	95	11	12						
Sulfotep	95	10	10						
Phorate	86	8	9						
Demeton-S	59	11	18						
Dimethoate	128	19	15						
Diazinon	93	9	10						
Disulfoton	63	11	18						
Parathion-methyl	95	10	10						
Fenchlorphos	91	9	10						
Malathion	94	14	15						
Fenthion	86	7	8						
Chlorpyrifos	91	9	10						
Parathion-ethyl	99	11	11						
Trichloronat	89	9	10						
Tetrachlorvinphos	91	8	9						
Prothiofos	85	9	11						
Merphos	82	9	10						
Fensulfothion	98	11	11						
Sulprofos	80	8	10						
EPN	97	11	11						
Azinphos-methyl	98	11	11						
Coumaphos	98	8	8						

n=12a

^bAverage recovery of surrogates

Shaker method

^dAverage RSD of Congeners

Pharmaceuticals, Dietary Supplements

For pharmaceuticals, natural products, and dietary supplements, ASE is used to:

- Extract natural products from plants.
- Verify that nutritional supplements such as St. John's Wort, echinacea, and ginkgo biloba meet industry guidelines for standardized marker compound levels
- Monitor the level of pharmaceutical agents and their metabolites in animal tissues, and test stability.
- Verify that levels of active compounds in products such as transdermal patches are within specification.

For these types of applications, ASE saves time and increases efficiency, as shown in the table to the upper right. Automation and improved reproducibility result in better control of manufacturing processes and faster identification of potential therapeutic agents. The ability to extract samples with a variety of different polarity solvents results in the generation of selective extract profiles, which then can be screened more easily for activity.

	Extraction for Marker Compounds from Natural Products										
	Dianthrones (St. John's Wort)				Silybin (Milk Thistle)		Curcumin (Tumeric Rhizome)		Thymol (Thyme)		
Method	Soxhlet	ASE	Soxhlet & Reflux	ASE	Soxhlet	ASE	Reflux	ASE	Steam Distillation	ASE	
Percent wt. (RSD%)	0.028 (7.1) ^a	0.035 (2.9)	2.6 (12)	3.7 (5.4)	1.13 (3.5)	1.16 (3.4)	0.89 (2.2)	1.06 (0.94)	1.15 (7.0)	1.17 (3.4)	
Solvents	DCM Acetone	DCM MeOH	DCM MeOH	DCM MeOH	Petrol MeOH	Hexane MeOH	MeOH	MeOH	Water	Hexane DCM	
Volume	250 mL	<50 mL	170 mL	<50 mL	200 mL	<70 mL	50 mL	<20 mL	250 mL	<80 mL	
Total Time	38 h	<25 min	7 h	<40 min	9 h	<25 min	1 h	<30 min	2 h	<25 min	

^aRSD (%), n=3

Chemical, Petrochemical, Polymers

In the polymer industry, ASE is used to characterize polymer structures using ASTM method D-7210:

- Extraction of plasticizers from PVC
- Extraction of polypropylene and polyethylene for additives such as UV stabilizers and antioxidants and slip agents
- Extraction of oils and organic acids from SBR samples
- Extraction of residual sugars in plant materials

ASE replaces 12—24-h solvent reflux extractions, significantly reducing extraction time and solvent exposure. In addition, faster turnaround of key QC information to the batch production facility can prevent loss of product due to poor formulation. ASE can also be used for competitive products analysis and routine product quality testing.

	Total Extractables from Styrene-Butadiene Rubber (SBR)									
Sample	Target Value	ASE Value (%)	ASE RSD (n = 3)	ASE Recovery (% vs. Target value)						
1	32.59	32.66	0.52%	100.2						
2	32.60	32.77	0.12%	100.5						
3	33.86	33.89	0.56%	100.1						
4	34.83	34.44	0.91%	98.9						

Wei	Weight Percent of Each Plasticizer in Poly Vinyl Chloride (PVC)								
Plasticizer	ASE Recovery (n=3)	Soxhlet Recovery (ASTM D2124) (n=2)	ASE Recovery (% vs. Target value)						
DOA	9.81	9.56	102.6						
TOP	9.50	9.28	102.4						
DOP	9.42	9.35	100.7						
TOTM	9.17	9.05	101.3						

Extraction of Additives from Low Density Polyethylene (LDPE)								
Procedure	Additive Concentration (ppm)							
	I-3114	I-1010	I-1330	I-168	I-1076			
Chloroform dissolution	nd	95	599	659	205			
ASE	nd	95	598	694	154			

Extraction of Additives from High Density Polyethylene (HDPE)								
Procedure		Additive Concentration (ppm)						
	I-3114	I-1010	I-1330	l-168	I-1076			
ASTM D-5524-94	353	132	nd	nd	240			
ASE	335	138	nd	nd	281			

Sample Preparation

ASE Goes Beyond Extraction to Deliver a Comprehensive Solution

Sample preparation is still a critical link in the overall analytical process. It often requires many steps and multiple hours to prepare samples for injection on an instrument. To improve productivity and minimize turn-around time, sample preparation requires more than just speed of the solvent extraction step. The ability to integrate pretreatment, solvent extraction, and post extraction

clean-up are critical for total productivity. Integration of these steps will improve overall productivity, reduce sample handling, and minimize preparation time.

Pretreatment: change in chemical or physical features of the sample prior to solvent extraction. This includes treatment of solid material with acids and bases.

Solvent extraction: separating analytes from the solid matrix and placing them in a compatible solvent.

Post-extraction treatment: includes sample clean-up to remove interferences using sorbent. Unlike other techniques, ASE integrates pretreatment, extraction, and post-extration treatment, as shown below.

	Sample Preparation Comparison									
Technique	Soxhlet	Sonication horn	Bag Technology	SPE/ Quechers	Automated Soxhlet	Microwave	PLE™	PSE®	ASE 200 and 300	ASE 350
Various sample sizes per batch	Limited	Yes	No	No	Limited	Limited	No	Limited	Limited	Yes
Extraction of Pretreated samples i.e. acid hydrolysis	Yes	No	Yes	No	Yes	Yes	No	No	No	Yes
Automated rinsing of system	No	No	No	No	No	No	No	No	Yes	Yes
Solvent extraction	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Solvent extraction and filtration	No	No	No	No	No	No	Yes	Yes	Yes	Yes
Sequential extraction and Flow thru extraction technology	No	No	No	No	No	No	No	No	Yes	Yes
Post extraction (in-cell) clean-up	No	No	No	Yes	No	No	Yes	No	Yes	Yes

Applications with pH-Hardened Pathway

The Dionium pathway supports a variety of applications that require sample pretreatment, such as:

- Determination of fats and lipids using acid hydrolysis.
- Determination of fats and total lipids using alkaline saponification.
- Determination of phenolic compounds in complex matrixes.
- Determination of chlorophenoxy acid herbicides in soils.
- Determination of residual sugars in waste vegetation.

Comparison of Extraction Techniques for Lipid (FAME) Determination Using GC/MS (n = 3)			
Mayonaise	Average	RSD	%RSD
Mojonnier	75.1	0.89	1.18
ASE	74.2	0.43	0.575
Corn Chips	Average	RSD	%RSD
Mojonnier	30.41	0.37	1.21
ASE	29.85	0.33	1.10
Parmesean Cheese	Average	RSD	%RSD
Mojonnier	26.41	0.284	1.08
ASE	26.27	0.220	0.839
Baked Shortbread	Average	RSD	%RSD
Mojonnier	13.95	0.033	0.238
ASE	14.07	0.451	3.20
Bologna Sample	Average	RSD	%RSD
Mojonnier	25.58	0.275	0.968
ASE	28.60	0.375	1.31

Choosing ASE

Your Choice Is No Longer Based Solely on Sample Size

Which ASE is Right for You?

The two Dionex ASE systems are designed to meet the extraction requirements of the full spectrum of laboratories performing solid and semisolid solvent extraction. Each ASE system uses elevated temperature and pressure to greatly speed extractions.

ASE systems feature:

- Automated sample extraction using flow-through technology with pH hardened pathways
- Automatic extract filtration
- Easy-to-fill sample cells with finger- or hand-tight fittings
- Easy-to-use collection vials and bottles
- Convenient front panel operation with multiple method storage
- Sensors for temperature, pressure, and solvent vapors ensure safe operation at all times
- Easy method transfer between systems
- Patented technology (patent numbers 5,843,311; 5,647,976; 5,660,727; and 5,785,856)
- Established methodologies
- Temperature range from ambient to 200 °C
- Samples cell sizes: 1, 5, 10, 22, 34, 66, and 100 mL
- Collection vial sizes: 60 or 250 mL
- Operating pressure: 1500 psi (100 bar)

ASE 150 Accelerated Solvent Extractor

The ASE 150 is the entry-level ASE system designed for use in lower- throughput labs. This system is priced economically and offers fast and efficient extraction for a large range of sample sizes. Key features include:

- Automated extraction of a single sample
- Economically priced for lower throughput laboratories
- Sample cell sizes: 1, 5, 10, 22, 34, 66, and 100 mL
- Collection vial sizes: 60 or 250 mL
- Operating pressure: 1500 psi (100 bar)
- Small footprint requires less than 36 cm (14 in.) of bench space

ASE 350 Accelerated Solvent Extractor

The ASE 350 is designed for high-throughput labs with large sample volume requirements. It is ideal for the busy environmental, biotech, pharmaceutical, chemical, food analysis, or research lab, supporting automation of up to 24 cells and sample cell volumes up to 100 mL. Key features include:

- Unattended extraction of up to 24 samples
- Samples cell sizes: 1, 5, 10, 22, 34, 66, and 100 mL
- Collection vial sizes: 60 or 250 mL
- Operating pressure: 1500 psi (100 bar)
- Automatic rinsing of system between sample extractions
- Solvent saver mode for further reduction in solvent consumption
- Scheduling programming for automated method optimization
- Integration of ASE Solvent Controller into the ASE 350 system
- Mixing or selection of three different solvent sources

ASE 150

ASE 350

Dionex's goal is to provide you with solutions to your extraction challenges rather than just selling you an instrument. You get a complete solution, and a partner committed to your success.

To meet that goal, we offer a complete line of training, service, and consulting products, installation and warranty service, and comprehensive support programs.

System Specifications

Power Requirements

Consumption: 500 VA watts max. Voltage: 100–120 or 220–240 VAC

Frequency: 50/60 Hz

Pneumatic Requirements:

N₂ at 1034–1340 kPa (150–200 psi)

Air at 400-827 kPa (60-120 psi) (ASE 350 optional)

ASE 150

Dimensions (h x w x d):

56.1 x 35.6 x 50.8 cm (22.1 x 14.0 x 20.0 in.)

Weight:

34 kg (75 lb)

ASE 350

Dimensions (h x w x d):

69.3 x 67.3 x 61.7 cm (27.3 x 26.5 x 24.3 in)

Weight

65 kg (140.0 lb)

Corporate Headquarters

Dionex Corporation 1228 Titan Way P.O. Box 3603

Sunnyvale, CA 94088-3603

Tel: (408) 737-0700 Fax: (408) 730-9403

Worldwide Sales and Service

North America

U.S. (847) 295-7500 Canada (905) 844-9650

South America

Brazil (55) 11 3731 5140

Europe

Austria (43) 1 616 51 25
Benelux (31) 20 683 9768
(32) 3 353 42 94
Denmark (45) 36 36 90 90
France (33) 1 39 30 01 10
Germany (49) 6126 991 0

France (33) 1 39 30 01 10
Germany (49) 6126 991 0
Ireland (353) 1 644 0064
Italy (39) 02 51 62 1267
Switzerland (41) 62 205 9966
United Kingdom (44) 1276 691722

Asia Pacific

Australia (61) 2 9420 5233 China (852) 2428 3282 India (91) 22 2764 2735 Japan (81) 6 6885 1213 Korea (82) 2 2653 2580 Singapore (65) 6289 1190 Taiwan (886) 2 8751 6655

www.dionex.com

Dionex products are designed, developed, and manufactured under an ISO 9001 Quality System.

© 2008 Dionex Corporation

PLE is a trademark of Fluid Management Systems, Inc.
PSE is a registered trademark of Applied Separations, Inc.
All other trademarks and registered trademarks are the
property of Dionex Corporation.

LPN 2012-02 10M 05/08 Printed in U.S.A.

